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Abstract. When the complete data fusion method is used to fuse inconsistent measurements, it is necessary to add to the 

measurement covariance matrix of each fusing profile a covariance matrix that takes into account the inconsistencies. A 

realistic estimate of these inconsistency covariance matrices is required for effectual fused products. We evaluate the 

possibility of assisting the estimate of the inconsistency covariance matrices using the value of the cost function minimized in 

the complete data fusion. The analytical expressions of expected value and variance of the cost function are derived. Modelling 10 

the inconsistency covariance matrix with one parameter, we determine the value of the parameter that makes the reduced cost 

function equal to its expected value and use the variance to assign an error to this determination. The quality of the 

inconsistency covariance matrix determined in this way is tested for simulated measurements of ozone profiles obtained in the 

thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. As expected, the method requires 

a sufficient statistics and poor results are obtained when a small numbers of profiles are being fused together, but very good 15 

results are obtained when the fusion involves a large number of profiles. 

1 Introduction 

Vertical profiles of atmospheric variables are often obtained with the inversion of remote sensing observations performed by 

instruments operating on space-borne and airborne platforms, as well as from ground-based stations. When the same portion 

(or nearby portions) of atmosphere is measured more times by the same instrument or by different instruments the 20 

measurements can be combined in order to obtain a single vertical profile of improved quality with respect to that of the 

profiles retrieved from the single observation. The simultaneous retrieval from several observations is considered the most 

comprehensive way to combine different measurements of the same quantity (Aires et al., 2012), however, recently a new 

method, referred to as Complete Data Fusion (CDF) (Ceccherini et al., 2015), was proposed that, with simpler implementation 

requirements, provides products of quality equivalent to that of the simultaneous retrieval products. 25 

The CDF method was proved (Ceccherini, 2016) to be equivalent to the measurement space solution data fusion method 

(Ceccherini et al., 2009) and the latter was successfully applied to the data fusion of MIPAS-ENVISAT and IASI-METOP 

measurements (Ceccherini et al., 2010a; Ceccherini et al., 2010b) and of MIPAS-STR and MARSCHALS measurements 

(Cortesi et al., 2016). 

On the other hand, as highlighted in Ceccherini et al. (2018), the CDF provides poor results when applied to inconsistent 30 

measurements. Three causes of inconsistency are possible: 

i) the profiles to be fused (in the following referred to as fusing profiles) are represented on different vertical grids 

ii) a variability is present in the observed species and the fusing profiles refer to different times and space locations 

iii) the fusing profiles are affected by different forward model errors. 

These inconsistencies were addressed in Ceccherini et al. (2018), but some problems remain open. The inconsistency of case 35 

i) was solved adding to the measurement covariance matrix (CM) of each fusing profile an interpolation CM, which is built 

using the grids of the fusing profiles and by the a priori CM. The inconsistency of case ii) was solved adding to the measurement 

CM of each fusing profile a coincidence CM, which describes the variability of the observed species in the field of the 

observations. Regarding the inconsistency of case iii) it was suggested to follow an approach similar to cases i) and ii) adding 
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to the measurement CM of each fusing profile a CM describing the forward model errors due, for example, to approximations 

in the model and uncertainties in atmospheric and instrumental parameters. The problem that remains open is the realistic 

estimate of these inconsistency CMs, which are otherwise determined on the basis of some educated guesses. 

The value of the cost function, which is minimized in the fusion process, depends on the inconsistency CMs and can be used 

to establish some constraints on their amplitude. The goal of this paper is to determine the expected value of the cost function 5 

and to use this expectation to build a procedure for the improvement of our educated guess of the inconsistency CMs. 

In order to assess its advantages we apply this procedure to simulated measurements of ozone profiles obtained in the thermal 

infrared in the framework of the Sentinel 4 mission (ESA, 2017) of the Copernicus programme 

(https://sentinel.esa.int/web/sentinel/missions). 

The paper is organized as follows: in Section 2, we recall the formulas of the CDF method in order to establish the formalism 10 

used in the subsequent sections. In Sections 3, we describe the properties of the cost function and in particular determine the 

expected value and the variance of the cost function distribution. In Section 4, we describe the method that estimates the 

inconsistency CMs using the expected value of the cost function, apply it to the determination of the coincidence CM and 

assess the cases in which it provides useful information. Conclusions are drawn in Section 5. 

2 The CDF method 15 

Let us assume to have N independent measurements of the vertical profile of an atmospheric target referred to the same space-

time location. Performing the retrieval of the N measurements with the optimal estimation method (Rodgers, 2000), we obtain 

N vectors ˆ ix  (i=1, 2, …, N), here assumed to be estimates of the same profile made on a common vertical grid. The vectors ˆ ix  

are characterized by the CMs Si and the averaging kernel matrices (AKMs) Ai (Ceccherini et al., 2003; Ceccherini and Ridolfi, 

2010; Rodgers, 2000). The CMs Si are each defined as <σiσi
T>, where the vector σi contains the errors on the vertical profile 20 

obtained propagating the errors of the observations through the retrieval process, the superscript T indicates the transpose of 

the vector and the symbol <…> indicates the statistical expected value. 

The fused profile xf of these N measurements, as provided by the CDF method, is obtained minimizing the following cost 

function (see Ceccherini et al., 2015): 

( ) ( ) ( ) ( ) ( )1 1

1

N
T T

i i i i i a a a
i

c − −

=

= − − + − −∑x α A x S α A x x x S x x , (1) 

where xa and Sa are the a priori profile and its CM that are used to constrain the data fusion and 25 

( )ˆi i i ai≡ − −α x I A x  (2) 

is a modified fusing profile with xai the a priori profile used in the i-th retrieval and I the identity matrix. 

It is possible to verify that the modified fusing profile of Eq. (2) is also a measurement of the true profile xt obtained using the 

averaging kernels: 

i i t i= +α A x σ  (3) 

This measurement does not depend on the a-priori profile and has the same CM as the fusing profile. 

The CDF solution xf is the profile that corresponds to the minimum of c(x) and is obtained with the following equation: 30 

( ) 11 1 1

1

N
T

f a i i i a a
i

−− − −

=

 
= + + 

 
∑x F S A S α S x , (4) 

where we have introduced the matrix 

1

1

N
T

i i i
i

−

=

= ∑F A S A , (5) 
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which is the Fisher information matrix (Ceccherini et al., 2012; Fisher, 1935) of the fused profile, equal to the sum of the 

Fisher information matrices of the fusing measurements. As indicated by the name, this matrix fully characterizes the 

information content of each measurement. 

The fused profile is characterized by the following CM and AKM: 

( ) ( )1 11 1
f a a

− −− −= + +S F S F F S  (6) 

( ) 11
f a

−−= +A F S F . (7) 

When the fusing profiles ˆ ix  are represented on different vertical grids, it is necessary to perform a resampling of the AKMs 5 

(Calisesi et al., 2005) which defines new i
′A  with their second index equal to that of the common fusion grid. Following 

Ceccherini et al. (2016), we define such a transformation as follows: 

i i i
′ =A A R , (8) 

where Ri are the generalized inverse matrices of the interpolation matrices Hi, which interpolate the fusing profiles on the 

fusion grid. 

In general, in order to account for interpolation, coincidence and forward model errors, the CDF formula can be modified 10 

(Ceccherini et al., 2018) by replacing αi with 

( )( ) ( )i f
i i i i a= − −α α A C R C x

, 
(9) 

where C(i) and C(f) are the sampling matrices that select the grids (i) and the grid (f), respectively, from a fine grid, that includes 

all the levels of the fusion grid (f) and of the N grids (i), and Si with 

,int ,coin ,otheri i i i i= + + +S S S S S , (10) 

where Si,int, Si,coin and Si,other are the CMs associated to the interpolation error, to the coincidence error and to the forward model 

errors. 15 

The CM associated to the interpolation error is given by 

( ) ( )( ) ( ) ( ) ( )
,int

Ti f i f T
i i i a i i= − −S A C R C S C R C A

. 
(11) 

The CM associated to the coincidence error is given by 
( ) ( )

,coin coin
i i T T

i i i=S A C S C A , 

where Scoin is the CM describing the variability of the true profiles of the fusing measurements. 
(12) 

The CM associated to the forward model errors is given by (Rodgers, 2000): 

,other ,FM
T

i i i i=S G S G , (13) 

where G is the gain matrix, which includes the derivatives of the retrieved profile with respect to the observations and Si,FM is 

the CM describing the forward model errors due, for example, to approximations in the model and uncertainties in atmospheric 20 

and instrumental parameters. 

3 The cost function 

In this Section, the expected value and the variance of the cost function are derived. In order to keep the formalism as simple 

as possible we deal with the cost function given in Eq. (1), where the treatment of inconsistency errors is not included. 

However, since the inconsistency errors only modify the CMs and the vectors αi and do not affect the fusion formula, the 25 

results obtained in this Section are valid in the general case. 
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Once that the fused profile xf is calculated from Eq. (4) we can substitute it in Eq. (1)  in order to obtain ( ) min
fc c≡x , that 

is the minimum value of the cost function. Because of measurement errors, cmin does not have a definite value, but assumes 

values according to a probability distribution. The properties of this probability distribution (in the following referred to as 

cost function distribution) are considered and in particular we determine the expected value and the variance of the distribution. 

In order to calculate these quantities we have to make explicit the errors σi in the expression of cmin , see next Section. We 5 

assume that the errors σi are normally distributed with expected values equal to zero, have CMs equal to Si and are uncorrelated 

for different measurements. 

3.1 The dependence of the cost function on the measurement errors 

Substituting in Eq. (4) the expression of αi given by Eq. (3) and using Eq. (7) we obtain the following expression for xf: 

( )f f t f a f= + − +x A x I A x σ , (14) 

where σf is the error on xf given by: 10 

( ) 11 1

1

N
T

f a i i i
i

−− −

=

= + ∑σ F S A S σ  (15) 

and characterized by the CM Sf =<σfσf
T> given in Eq. (6). 

Substituting in Eq. (1) the expression of αi given by Eq. (3) and x with the expression of xf given by Eq. (14), we obtain the 

expression of cmin(σi) as a function of the measurement errors: 

( ) ( )( ) ( )( )

( ) ( )

min 1

1

1

N T

i i i f i f t a i i i f i f t a
i

T

f f t a a f f t a

c −

=

−

   = − + − − − + − −   

   + + − + −   

∑σ σ A σ A I A x x S σ A σ A I A x x

σ A x x S σ A x x
, (16) 

where σf is a linear function of σi expressed by Eq. (15). 

Eq. (16) contains several matrix products, which produce several terms; we can rearrange these terms in the following way: 15 

( ) ( ) ( )min min min min
0 1 2i i ic c c c= + +σ σ σ , (17) 

where cmin
0 is independent of the errors, cmin

1(σi) is linear in the errors and cmin
2(σi) is quadratic in the errors. 

In the case of the term independent of the errors, performing algebraic operations and using Eqs. (5) and (7), we obtain: 

( )( ) ( )( )

( ) ( )

( ) ( ) ( )( )

min 1
0

1

1

1 1

N T

i f t a i i f t a
i

T

f t a a f t a

T T
t a a f t a t a t a a f

c

tr

−

=

−

− −

   = − − − − +   

   + − − =   
 = − − = − − 

∑ A I A x x S A I A x x

A x x S A x x

x x S A x x x x x x S A
, 

(18) 

where tr[] identifies the trace of the matrix and we have used the relation for the trace of a product of two matrices 

tr[CD]=tr[DC] when D and CT have the same shape. 

In the case of the term linear in the errors, performing algebraic operations and using Eqs. (5), (7) and (15), we obtain: 20 

( ) ( )( ) ( )

( )

min 1 1
1

1

1

2 2

2

N T T

i i f t a i i i f f t a a f
i

T
t a a f

c − −

=

−

     = − − − + − =    

= −

∑σ A I A x x S σ A σ A x x S σ

x x S σ
. (19) 

In the case of the term quadratic in the errors, performing algebraic operations and using Eqs. (5) and (15), we obtain: 
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( ) ( ) ( )

( )

min 1 1
2

1

1 1

1

N T T
i i i f i i i f f a f

i
N

T T
i i i f a f

i

c − −

=

− −

=

= − − + =

= − +

∑

∑

σ σ A σ S σ A σ σ S σ

σ S σ σ F S σ
. (20) 

From Eqs (17-20) we obtain that the full expression of cmin(σi), arranged as a function of the errors, is: 

( ) ( )( ) ( ) ( )min 1 1 1 1

1
2

N
T T T T

i t a t a a f t a a f i i i f a f
i

c tr − − − −

=

 = − − + − + − +  ∑σ x x x x S A x x S σ σ S σ σ F S σ , (21) 

where σf is a function of σi according to Eq. (15).  

3.2 Expected value of the cost function 

The expected value of the cost function is equal to the summation of the expected values of its three terms. Since cmin
0 is 

independent of the errors, its expected value coincides with its constant value. The expected value of cmin
1(σi) is zero because 

this term is linear in σi, and the expected values of σi are equal to zero. Therefore, we need to calculate only the expected value 5 

of cmin
2(σi): 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

min 1 1 1 1
2

1 1

1

1 1

N N
T T T T

i i i i f a f i i i f f a
i i

N N

i f a i f
i i

c tr tr

tr tr n tr

− − − −

= =

−

= =

= − + = − + =

= − + = −

∑ ∑

∑ ∑

σ σ S σ σ F S σ σ σ S σ σ F S

I S F S A
, (22) 

where Eqs. (6) and (7) have been used and ni is the number of eigenvalues different from zero of Si
-1 rather than the number 

of its diagonal elements. When Si is singular (or near singular) the inversion is performed by means of the generalized inverse 

(Kalman, 1976), and therefore, Si
-1 may have some eigenvalues equal to zero. 

Finally, the expected value of the cost function is given by: 10 

( ) ( ) ( )( )min 1

1

N
T

i i f t a t a a f
i

c n tr tr −

=

 = − + − − ∑σ A x x x x S A . (23) 

Recalling that the trace of the AKM represents the number of degrees of freedom (DOFs), which is the number of independent 

parameters actually determined by the analysis (Rodgers, 2000), we see that the expected value of the cost function is equal 

to: a first term that counts the number of available measurements minus a second term that is the number of DOFs plus a third 

term that depends on the difference between the a priori profile and the true profile. 

3.3 Variance of the cost function 15 

Using Eq. (21) it is possible to calculate the expression of the variance of the cost function. For those interested, the lengthy 

calculation is reported in Appendix A. The result is: 

( ) ( ) ( ) ( )( ) ( )min 2 1

1
var 2 4 2 4

N
T

i i f f t a t a a f f
i

c n tr tr tr −

=

   = − + + − − −   ∑σ A A x x x x S A I A . (24) 

Eqs. (23) and (24) provide new relationships that make possible to calculate the expected value and the variance of the cost 

function minimized in the CDF. 

A particular case is that in which we take a priori errors going to infinity (unconstrained case). In that case Sa
-1 tends to the 20 

null matrix and Af coincides with the identity matrix, therefore, we obtain: 

( ) 1

min

0
1a

N

i i
i

c n n− →
=

= −∑S
σ  (25) 
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( ) 1

min

0
1

var 2
a

N

i i
i

c n n− →
=

   = −    
∑S

σ , (26) 

where n is the number of levels of the fused profile. As expected, Eqs (25-26) are equal to the expected value and the variance 

of the chi-square distribution. 

More generally, we notice that the third term of Eq. (23) and the fourth term of Eq. (24), which are only present when a 

constraint is used for the calculation of the fused profile, are a very small correction whenever mild constraints are used. 

3.4 Reduced cost function 5 

It is useful to introduce the reduced cost function defined as the ratio between the cost function and the expected value of the 

cost function: 

( ) ( )
( )minr

i

c
c

c
=

x
x

σ  (27) 

with an expected value equal to 1. 

Accordingly, the variance of the reduced cost function is equal to: 

( )
( )

( )

min
min

2min

var
var i

r i

i

c
c

c

    = 
σ

σ
σ

. (28) 

4 Application 10 

4.1 Method to estimate the inconsistency CMs 

When the correct CMs are used, the reduced cost function is bound to be equal to one within the variability determined by its 

variance. In turn using the expected value of the reduced cost function as a constraint we can tune the values of the CMs that 

characterize the inconsistencies of the fusing profiles, in particular either the CM Scoin describing the variability of the true 

profiles of the fusing measurements or the CMs Si,FM describing the forward model errors. Of course the reduced cost function 15 

is a single constraint, furthermore limited by the uncertainty introduced by its variance, and can only be used to determine one 

parameter of the inconsistency CMs. However, if the same unknown CM is involved in several fusion processes a more 

elaborate determination of the CM may also be considered. In the following we consider the simple case in which the 

inconsistency CM is parametrized with a single parameter. 

4.1.1 Estimate of the k parameter 20 

If the inconsistency CM is written as kΣ, where k is a multiplicative parameter and Σ is an assumed CM that describes the 

inconsistency error, the value of the k parameter can be determined imposing that the reduced cost function is equal to one: 

( ) , 1r fc k k  = x . (29) 

Since cr[xf(k),k] is a monotonic decreasing function of k, the value of k satisfying Eq. (29) can be easily found numerically. 

4.1.2 Estimate of the error of the k parameter 

The variance of the reduced cost function determines an error Δk on the value of the parameter k that is given by the following 25 

expression: 
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( ){ }
( )

var ,

,
r f

r f

c k k
k

dc k k
dk

  
∆ =

  

x

x . (30) 

The determination of k and Δk by means of Eqs. (29) and (30) requires the calculation of <cmin (σi)> and var[cmin (σi)] by means 

of Eqs. (23) and (24), which depend on the true profile. Since the true profile is unknown, in the following analysis we replace 

the true profile with the fused profile, which is its best estimate. 

4.2 The determination of the coincidence CM in the case of simulated ozone data 

4.2.1 Simulated data 5 

The use of CDF will be particularly relevant for the analysis of the future atmospheric Sentinel missions of the Copernicus 

programme (https://sentinel.esa.int/web/sentinel/missions). The amount of data that will be available from these missions will 

pose technical challenges to most applications and the CDF can be used to reduce the number of products while maintaining 

the information content of the full datasets. In general, we have a good understanding of the average geographical variability 

of the observed products and a reasonable assumption can be made of the Scoin that is used for the data fusion, but local 10 

fluctuations may also have significant effects. Therefore, the possibility of using a scalar k which takes into account the local 

fluctuations may provide for these data an important improvement. For this reason, simulated data of the Sentinel 4 are a good 

opportunity for the test of the method described in Section 4.1. 

In the framework of the AURORA project (Cortesi et al., 2018) we simulated Sentinel 4 ozone vertical profile measurements 

as they could be obtained by the Infrared Sounder operating in the thermal infrared on board the Meteosat Third Generation 15 

satellite (http://www.eumetsat.int/website/home/Satellites/FutureSatellites/MeteosatThirdGeneration/MTGDesign/). The 

Sentinel-4 and the Sentinel-5P observations will improve our ozone composition knowledge (Quesada-Ruiz et al., 2019) and 

the AURORA project is assessing the advantages offered by CDF in the exploitation of the data. The atmosphere used for the 

simulations is taken from the Modern Era-Retrospective analysis for Research and Applications version 2 (MERRA2) 

reanalysis (Gelaro et al., 2017). The MERRA2 data are provided by the Global Modelling and Assimilation Office (GMAO) 20 

at NASA Goddard Space Flight Center. This reanalysis covers the modern era of remotely sensed data, from 1979 through the 

present. The data of a geostationary image, acquired on 1st April 2012 in about one hour, were considered and of the available 

423719 measurements only the 35594 measurements in clear sky have been simulated. A coincidence cell of 0,5° step of 

latitude and 0.625° step of longitude was chosen for the data fusion and a total of 1296 cells, where there are at least two 

measurements that can be fused, are obtained. The time coincidence is in our case very short and is practically negligible. 25 

The a priori profiles provided by the McPeters and Labow climatology (McPeters and Labow, 2012) are used for all fusing 

and fused profiles. The a priori CMs are obtained using the standard deviation of the McPeters and Labow climatology when 

its value is larger than 20% of the a priori profile and a value of 20% of the a priori profile in the other cases. The off diagonal 

elements are calculated considering a correlation length of 6 km. The correlation length provides an effective regularization 

that reduces oscillations in the retrieved profiles and the value of 6 km is typically used for nadir ozone profile retrieval (Liu 30 

et al., 2010, Kroon et al., 2011, Miles et al., 2015). 

The method described in Section 4.1 to determine the coincidence CMs for the fusion of these simulated data is used. We 

model Scoin as kSa, that is we make the hypothesis that the variability of the true profiles is a fraction of that represented by the 

a priori CM, which describes the climatological variability of the true profiles on geographical regions that are larger than the 

fusion cells. 35 

In Fig. 1, we report the k values given by Eq. (29) as a function of the number of fusing profiles, the Δk errors are given by the 

colour scale. The second panel provides an enlargement of the first one for small values of k. From Fig. 1 we see that large 

values of k are obtained when the number of fusing profiles is small and large errors are present. Since k is a positive parameter, 
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the uncertainty in its determination manifests itself mainly with large positive values and a sufficient statistics is needed for a 

useful determination of k and in our case the number of fusing profiles must be greater than 10. 

 
Figure 1: (a) Values of the parameter k as a function of the number of fusing profiles. (b) Enlargement of panel (a) for small values 

of k. The Δk errors are reported in the colour scale. 5 

Increasing the number of fusing profiles the errors decrease and smaller values of k are obtained, although the Δk uncertainty, 

together with differences in the geographical variability, is still responsible for some dispersion of the k values. When the 

number of fusing profiles is sufficient to produce reliable k values we obtain k values that are a fraction of the unity confirming 

that a small geographical variability, a fraction of the climatological variability, occurs within the cell chosen for the data 

fusion. In order to assess the entity of the obtained values it is important to notice that k multiplies the CM and, accordingly, 10 

is proportional to the square of the geographical variability. 

4.2.2 Results for a single cell with a large number of fusing profiles 

As an example, we analyze the behavior of a cell with a large number of fusing profiles for which the k value is well determined 

being significantly larger than the error Δk. We deal with a cell with 80 fusing profiles, for which, applying the method 

described in Section 4.1, we obtain k = 0.068 and Δk = 0.014. In this case, Δk is about one fifth of the k value. 15 

The use of simulated data makes it possible to compare the results with the true quantities that we want to measure. In Fig. 2, 

we report the differences between three fused profiles, obtained with k = 0.068, with k = 0 and with the method used in the 

previous paper on the importance of coincidence errors (Ceccherini et al., 2018), and the true profile of the fusion, calculated 

as the mean of the true profiles corresponding to the fusing profiles. In the previous paper, an educated guess was made of the 

coincidence error and Scoin equal to a matrix with the square of the 5% of the a priori profile on the diagonal elements and a 20 

correlation length of 6 km for the off diagonal elements was used. In the figure, also the errors and the numbers of DOFs of 

the three fused profiles are reported. 

We see that the fused profile with k = 0 has large differences with respect to the true profile of the fusion, while the other two 

fused profiles have smaller and comparable differences. The errors are basically the same for all three fused profiles and the 

numbers of DOFs are about equal for k = 0.068 and for the method used in the previous paper, and slightly larger for k = 0. 25 

The importance of using a coincidence CM is confirmed because it provides a significant reduction of the differences with the 

true profile at the cost of a negligible reduction of the number of DOFs. The difference between the results obtained with the 

two coincidence CMs is small, but the method described in Section 4.1 provides a slightly better compromise between 

reproduction of the true profile and number of DOFs and, more important, is an objective determination based on a 

mathematical constraint. 30 
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Figure 2: Differences between the fused profiles obtained with k = 0.068 (black line), k = 0 (red line) and the method used in 

Ceccherini et al. (2018) (green line) (* in this case k is applied to a CM built in a slightly different way, see text) and the mean of 
the true profiles related to the fusing profiles as a function of altitude (and pressure). The errors (dotted lines) and the numbers of 5 

DOFs of the three fused profiles are reported as well. 

In Fig. 3, we report the square root of the diagonal elements of Scoin estimated by the method described in Section 4.1 (with its 

errors) and by the method used in the previous paper as a function of altitude (and pressure) and compare them with the 

standard deviation of the true profiles corresponding to the fusing profiles. 

 10 
Figure 3: Square root of the diagonal elements of Scoin estimated by the method described in Section 4.1 (black line), with its errors 
(grey band around the black line), and by the educated guess used in Ceccherini et al. (2018) (green line) (* in this case k is applied 
to a CM built in a slightly different way, see text) as a function of altitude (and pressure) compared with the standard deviation of 

the true profiles corresponding to the fusing profiles (blue line). 
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We see that the method described in Section 4.1 is able to reproduce well the standard deviation of the true profiles up to about 

30 km of altitude. Above 30 km this method overestimates the spread of the true profiles, probably because we assume Scoin 

proportional to the a priori CM, which includes the day-night variability of ozone. This variability is instead absent in the 

fusing profiles because they belong to a single geostationary image that is acquired in one hour. The educated guess of Scoin 

significantly overestimates the standard deviation of the true profiles below 8 km and above 15 km of altitude. 5 

Within the limits posed by the fact that a single parameter is used for the estimate of a CM, the coincidence error determined 

with the constraint of the cost function is a very good representation of the real geographical variability, much better than that 

obtained with the educated guess (please note the logarithmic scale in Fig. 3), although the effect of this difference on the 

fusion process is very small, given the negligible consequences of overestimates of the coincidence error.  

4.2.3 Analysis of all fusion cells 10 

In order to evaluate the performances of the method described in Section 4.1 we introduce a quantifier β equal to the root of 

the square sum of the relative differences between the fused profile and its true profile: 

2

1

n
fi ti

i ti

x x
x

β
=

− 
=  

 
∑ , (31) 

where fix  is the i-th component of the fused profile, tix  is the i-th component of the true profile of the fusion and n is the 

number of levels of the fused profile. We calculated this quantifier for all the fusion cells. 

In Fig. 4, we show the scatter plots of β and of the number of DOFs (panel (a) and panel (b), respectively) of the fused profiles 15 

obtained with the k values determined by the method described in Section 4.1 as a function of the same quantities obtained 

with k equal to zero. The number of fusing profiles is reported in the colour scale. In the case of β, small values are preferred; 

in the case of number of DOFs, large values are preferred. 

 
Figure 4: (a) Scatter plot of βk as a function of β0. The quantifier βk corresponds to the k value determined by the method described 20 
in Section 4.1 and is reported in the y axis, while β0 corresponds to k equal to zero and is reported in the x axis. (b) Scatter plot of 
DOFsk as a function of DOFs0. DOFsk is the number of DOFs of the fused profile obtained when k is determined by the method 
described in Section 4.1 and is reported in the y axis, while DOFs0 is the number of DOFs of the fused profile obtained when k is 

equal to zero and is reported in the x axis. The number of fusing profiles is reported in the colour scale. 

From Fig. 4 we see that for large values of the number of fusing profiles in general the method described in Section 4.1 25 

determines a significant reduction of β with respect to the case of k equal to zero, while the effect on the number of DOFs is 

negligible. In some cases for small values of the number of fusing profiles, we see that the use of the large value of k, 

erroneously determined by the method for the insufficient statistics, causes a significant reduction of the number of DOFs and 
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sometimes also an increase of β. A worse value of β is obtained in a few cases also for cells that do not have a very small 

number of fusing profiles, however the loss observed in these cases is much smaller than the gain obtained in the much more 

numerous cells for which a reduction of β is observed. The distribution of the colours in Fig. 4b clearly shows that the number 

of DOFs increases when the number of fusing profiles increases, confirming the improvement of information obtained with 

the fusion of many profiles. 5 

A complete evaluation of the performances of the method has to take into account both the ability to reproduce the true profile 

(represented by β) and the number of DOFs. For this reason, we define a new quantifier γ, equal to the ratio between β and the 

number of DOFs, which takes into account both aspects: 

DOFs
βγ = . (32) 

The quality of the fused profile improves when the value of γ is reduced. In Fig. 5, we show the scatter plot of γ of the fused 

profiles obtained with the k values determined by the method described in Section 4.1 as a function of γ of the fused profiles 10 

obtained with k equal to zero. If the number of fusing profiles is smaller than 10 the points are reported in red otherwise in 

blue. 

 
Figure 5: Scatter plot of γk as a function of γ0. The quantifier γk corresponds to the k value determined by the method described in 

Section 4.1 and is reported in the y axis, while γ0 corresponds to k equal to zero and is reported in the x axis. If the number of 15 
fusing profiles is smaller than 10 the points are reported in red otherwise in blue.  

From Fig. 5 we see that when the number of fusing profiles is larger than 10 in general the method described in Section 4.1 

determines a reduction of γ, improving the quality of the fused profiles. Occasionally a worsening is observed, but 

improvements, in number and in entity, are overwhelmingly larger than worsenings. When the number of fusing profiles is 

smaller than 10 the k values determined by the method are affected by large errors (see Fig. 1) and values that are much larger 20 

than a reasonable expectation may be obtained. Therefore, it is not a surprise that in these cases the dominant effect is a 

degradation of the quality of the fused profiles with respect to the case of k equal to zero. For this reason, the method described 

in Section 4.1, can only be used when either k is determined with a small error or, similarly, the number of fusing profiles is 

sufficiently large. In the other cases, an educated guess should be used, possibly supported by the indications provided by the 

results obtained in the cells with a large number of measurements. 25 
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5 Conclusions 

The measurements that we wish to fuse often have some inconsistencies due to representations on different vertical grids, 

imperfect time and space coincidence and different forward model errors. In order to apply the CDF method to inconsistent 

measurements it is necessary to add to the measurement CM of each fusing profile a CM that qualifies these inconsistencies 

as errors and prevents their use as erroneous features of the profile. Therefore, a realistic estimate of the inconsistency CM is 5 

required for effectual fused products. In this paper, we propose to use the statistical properties of the cost function distribution 

to improve the estimate of the inconsistency CM. 

The expected value and the variance of the cost function distribution of the data fusion have been analytically determined for 

the first time. This allowed us to calculate the reduced cost function, which is bound to be equal to one within the variability 

determined by its variance. Modelling the inconsistency CM with one parameter, we used the expected value of the reduced 10 

cost function as a constraint to tune the value of this parameter and the variance of the reduced cost function to assign an error 

to this value. 

We applied this method to simulated measurements of ozone profiles obtained in the thermal infrared in the framework of the 

Sentinel 4 mission of the Copernicus programme. The results show that when the number of fusing profiles is small the values 

of the parameter are affected by large errors, in particular they are almost completely undetermined if the number of fusing 15 

profiles is smaller than 10. For such small values of the number of fusing profiles, the method is not able to provide reliable 

values of the parameter and it is better to use an educated guess for the estimate of the inconsistency CM. On the other hand, 

when the number of fusing profiles is large enough the values of the parameter provided by the method are affected by small 

errors and the estimated coincidence CMs generally improve the performances of the CDF method, providing a significant 

reduction of the differences between retrieved profile and true profile, with a negligible reduction of the number of DOFs. 20 

 

Data availability. The data of the simulations presented in the paper are available upon request to the authors. 

Appendix A 

In this appendix we make the calculation of the variance of the cost function given in Eq. (24). 

The variance is equal to: 25 

( ) ( ) ( )
2min min minvar i i ic c c   = −   σ σ σ . (A1) 

Substituting in Eq. (A1) the expression of cmin (σi) given by Eq. (17), we obtain: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2min min min min min min min
0 1 2 0 1 2

2 2 2 2min min min min min min
1 2 2 1 2 2

var i i i i i

i i i i i i

c c c c c c c

c c c c c c

   = + + − − − =   

     = + − = + −    

σ σ σ σ σ

σ σ σ σ σ σ
 ,(A2) 

where we used <cmin
0>=cmin

0, <cmin
1(σi)>=0 and <cmin

1(σi)cmin
2(σi)>=0 because the product cmin

1(σi)cmin
2(σi) is cubic in the 

errors and, therefore, its expected value is zero as a consequence of the symmetry of the normal distribution. 

Using Eq. (19), for the first term of Eq. (A2) we obtain: 

( ) ( )( )

( )( ) ( )( ) ( )

2min 1 1
1

1 1 1

4

4 4

TT
i f a t a t a a f

T T
f a t a t a a t a t a a f f

c

tr tr

− −

− − −

  = − − = 

   = − − = − − −   

σ σ S x x x x S σ

S S x x x x S x x x x S A I A
, (A3) 

where we have used the relation ( )1
f a f f

− = −S S A I A that comes from Eqs. (6) and (7). 30 
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Using Eq. (20), for the second term of Eq. (A2) we obtain: 

( ) ( ) ( )
2 2

22min 1 1 1 1
2

1 1
2

N N
T T T T

i i i i f a f i i i f a f
i i

c − − − −

= =

      = + + − +         
∑ ∑σ σ S σ σ F S σ σ S σ σ F S σ  .(A4) 

Some further elaboration is needed to evaluate these three terms: 

( ) ( ) ( ) ( )
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≠
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≠
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( ) ( ) ( ) ( ){ }
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and 
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(A7) 

where we have used the formula for the expected value of the quartic form given in Petersen and Pedersen (2012), Eqs. (5-7) 

and Eq. (15). 

The third term of Eq. (A2) is given by Eq. (22). 5 

From Eq. (A2), using Eq. (22) and Eqs. (A3-A7), we obtain the expression of the variance of the cost function: 

( ) ( ) ( ) ( )( ) ( )min 2 1

1
var 2 4 2 4

N
T

i i f f t a t a a f f
i

c n tr tr tr −

=

   = − + + − − −   ∑σ A A x x x x S A I A . (A8) 

 

Author contributions. SC calculated the expected value and the variance of the cost function and wrote the draft version of the 

paper. NZ wrote the Python code of the complete data fusion and applied the procedure to determine the coincidence 

covariance matrix to the ozone simulated measurements. BC suggested the idea to use the cost function to determine the 10 

inconsistency covariance matrices and contributed to the interpretation of the results. SDB performed the simulation of the 

ozone measurements. UC and CT are, respectively, the principal investigator and the project manager of the AURORA project 

and coordinated the activity of the project. All the authors revised the manuscript. 

 

Competing interests. The authors declare that they have no conflict of interest. 15 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-32
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 22 February 2019
c© Author(s) 2019. CC BY 4.0 License.



14 
 

 

Acknowledgments. The results presented in this paper arise from research activities conducted in the framework of the 

AURORA project (http://www.aurora-copernicus.eu/) supported by the Horizon 2020 research and innovation programme of 

the European Union (Call: H2020-EO-2015; Topic: EO-2-2015) under Grant Agreement N. 687428. 

References 5 

Aires, F., Aznay, O., Prigent, C., Paul, M., and Bernardo, F.: Synergistic multi-wavelength remote sensing versus a posteriori 

combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp-A, J. Geophys. Res., 117, 

D18304, 2012. 

 

Calisesi, Y., ,Soebijanta, V. T., and .Oss, R. v.: Regridding of remote soundings: formulation and application to ozone profile 10 

comparison, J. Geophys.  Res., 110, D23306, doi:10.1029/2005JD006122, 2005. 

 

Ceccherini, S.: Equivalence of measurement space solution data fusion and complete fusion, J. Quant. Spectrosc. Radiat., 182, 

71-74, 2016. 

 15 

Ceccherini, S., and Ridolfi, M.: Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-

Marquardt solution of the retrieval of atmospheric vertical profiles, Atmos. Chem. Phys., 10, 3131-3139, 2010. 

 

Ceccherini, S., Carli, B., Pascale, E., Prosperi, M., Raspollini, P. and Dinelli, B.M.: Comparison of measurements made with 

two different instruments of the same atmospheric vertical profile, Appl. Opt., 42, 6465–6473, 2003. 20 

 

Ceccherini, S., Raspollini, P., and Carli, B.: Optimal use of the information provided by indirect measurements of atmospheric 

vertical profiles, Opt. Express., 17, 4944–4958, 2009. 

 

Ceccherini, S., Carli, B., Cortesi, U., Del Bianco, S. and Raspollini, P.: Retrieval of the vertical column of an atmospheric 25 

constituent from data fusion of remote sensing measurements, J. Quant. Spectrosc. Radiat., 111, 507-514, 2010a. 

 

Ceccherini, S., Cortesi, U., Del Bianco, S., Raspollini P., and Carli B.: IASI-METOP and MIPAS-ENVISAT data fusion, 

Atmos. Chem. Phys., 10, 4689-4698, 2010b. 

 30 

Ceccherini, S., Carli, B., Raspollini, P.: Quality quantifier of indirect measurements, Opt. Express, 20, 5151-5167, 2012. 
 

Ceccherini, S., Carli, B., and Raspollini, P.: Equivalence of data fusion and simultaneous retrieval, Opt. Express, 23, 8476-

8488, 2015. 

 35 

Ceccherini, S., Carli, B., and Raspollini, P.: Vertical grid of retrieved atmospheric profiles, J. Quant. Spectrosc. Radiat., 174, 

7-13, 2016. 

 

Ceccherini, S., Carli, B., Tirelli, C., Zoppetti, N., Del Bianco, S., Cortesi, U., Kujanpää, J., and Dragani, R.: Importance of 

interpolation and coincidence errors in data fusion, Atmos. Meas. Tech., 11, 1009-1017, https://doi.org/10.5194/amt-11-1009-40 

2018, 2018. 

 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-32
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 22 February 2019
c© Author(s) 2019. CC BY 4.0 License.



15 
 

Cortesi, U., Del Bianco, S., Ceccherini, S., Gai, M., Dinelli, B.M., Castelli, E., Oelhaf, H., Woiwode, W., Höpfner, M., and 

Gerber, D.: Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor 

constituents, Atmos. Meas. Tech., 9, 2267-2289, 2016. 

 
Cortesi, U., Ceccherini, S., Del Bianco, S., Gai, M., Tirelli, C., Zoppetti, N., Barbara, F.,Bonazountas, M., Argyridis, A., Bós, 5 

A.,Loenen, E., Arola, A., Kujanpää, J., Lipponen, A., Nyamsi, W.W., van der A, R., van Peet, J., Tuinder, O., Farruggia, V., 

Masini, A., Simeone, E., Dragani, R., Keppens, A., Lambert, J.-C., van Roozendael, M., Lerot, C., Yu, H., and Verberne, K.: 

Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview, Atmosphere, 9, 454, 

https://doi.org/10.3390/atmos9110454, 2018. 

 10 

ESA: Sentinel-4: ESA’s Geostationary Atmospheric Mission for Copernicus Operational Services, SP-1334, April 2017, 

available at http://esamultimedia.esa.int/multimedia/publications/SP-1334/SP-1334.pdf, 2017. 

 

Fisher, R. A.: The logic of inductive inference, J. Roy. Stat. Soc., 98, 39-54, 1935. 

 15 

Gelaro, R., McCarty, W., Max J. Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, 

M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, 

W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., 

Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, 

Version 2 (MERRA-2), J. Climate, 30, 5419-5454. https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. 20 

 

Kalman, R. E.: Algebraic aspects of the generalized inverse of a rectangular matrix, Proceedings of Advanced Seminar on 

Generalized Inverse and Applications, M. Z. Nashed, Academic, San Diego, Calif., 111-124, 1976. 

 

Kroon, M., de Haan, J. F., Veefkind, J. P., Froidevaux, L., Wang, R., Kivi, R. and Hakkarainen, J. J.: Validation of operational 25 

ozone profiles from the Ozone Monitoring Instrument, J. Geophys. Res., 116, D18305, doi:10.1029/2010JD015100, 2011. 

 

Liu, X., Bhartia, P. K., Chance, K., Spurr, R. J. D., and Kurosu, T. P.: Ozone profile retrievals from the Ozone Monitoring 

Instrument, Atmos. Chem. Phys., 10, 2521-2537, https://doi.org/10.5194/acp-10-2521-2010, 2010. 

 30 

McPeters, R.D., and Labow, G.J.: Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval 

algorithms, J. Geophys. Res., 117, D10303, doi:10.1029/2011JD017006, 2012. 

 

Miles, G. M., Siddans, R., Kerridge, B. J., Latter, B. G., and Richards, N. A. D.: Tropospheric ozone and ozone profiles 

retrieved from GOME-2 and their validation, Atmos. Meas. Tech., 8, 385-398, https://doi.org/10.5194/amt-8-385-2015, 2015. 35 

 

Petersen, K. B., and Pedersen, M. S.: The matrix cookbook, available at  

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf, 2012. 

 

Quesada-Ruiz, S., Attié, J.-L., Lahoz, W. A., Abida, R., Ricaud, P., El Amraoui, L., Zbinden, R., Piacentini, A., Joly, M., 40 

Eskes, H., Segers, A., Curier, L., de Haan, J., Kujanpää, J., Oude-Nijhuis, A., Tamminen, J., Timmermans, R., and Veefkind, 

P.: Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition, Atmos. Meas. 

Tech. Discuss., https://doi.org/10.5194/amt-2018-456, in review, 2019. 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-32
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 22 February 2019
c© Author(s) 2019. CC BY 4.0 License.



16 
 

 

Rodgers, C.D., Inverse Methods for Atmospheric Sounding: Theory and Practice, Vol. 2 of Series on Atmospheric, Oceanic 

and Planetary Physics, World Scientific, Singapore, 2000. 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-32
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 22 February 2019
c© Author(s) 2019. CC BY 4.0 License.


